

Effective from Session: 2015-16							
Course Code	CH215	Title of the Course	Fundamental of Physical Chemistry				
Year	II	Semester III 3 1 0					
Pre-Requisite	10+2 with Chemistry	Co-requisite Elementary Mathematics					
Course Objectives	The purpose of this undergraduate course is to impart basic and key knowledge of physical chemistry. By using the principle of physics and mathematics to obtain quantitative relations which are very important for higher studies. After successfully completing the course, the student will be able explore the subject into their respective dimensions.						

	Course Outcomes
CO1	Students are able to understand the order and molecularity of reaction, concept of activation energy method of integration, half-life method and isolation and
	their applications.
CO2	Students would restate the definition of system, surrounding, closed and open system, extensive and intensive properties and understand the first law of
	thermodynamics by taking isothermal & adiabatic processes.
CO3	Students evaluate fundamentals of electrochemistry and understand the concept of pH, solubility and its application.
CO4	Students would get inside the sound knowledge of gas and their properties and examine the relationships between gas temperature, pressure, amount, and
	volume.
CO5	Students will be able to understand the key concepts for lowering of vapor pressure, elevation in boiling point and depression in freezing point. They are
	able to distinguish between osmosis and reverse osmosis and their applications.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO			
1	Chemical Kinetics	Rate of a reaction, factors influencing the rate of a reaction, concentration, solvent, temperature, pressure, light, catalyst concentration dependence of rates, mathematical characteristics of simple chemical reactions- First & second order, half life. Determination of order of reaction (integration, method), Arrhenius equation, concept of activation energy.	8	CO1			
2	Thermodynamics	Definition and explanation of terms- System, boundary, surrounding. Homogeneous system, isolated system, Closed system, Open system. Intensive and extensive properties. First law of Thermodynamics: statement and equation- Cp, Cv relationship- Calculation of W, q, dU and dH for the expansion of ideal gases under reversible- isothermal and adiabatic conditions.	8	CO2			
3	Electrochemistry	Galvanic Cells, Electrode potential, Standard electrode potential, Nernst equation, Electrochemical series and its applications: measurement of pH,Solubility and solubility product and its applications	8	CO3			
4	Gaseous state	Ideal and real gases, Causes of deviation from ideal behaviour, van der Waals gas equation and their limitations. Kinetics gas equation, deduction of gas laws from kinetic gas equation, kinds of velocities: Root mean square, average and most probable velocities. Calculation of molecular velocities.	8	CO4			
5	Colligative Properties	Lowering of vapour pressure, Raoult's law, Determination of molecular mass of solute from lowering of vapour pressure. Elevation of boiling point relation between elevation of boiling point and lowering of		CO5			
Reference	ce Books:						
1. Prin	nciples of Physical Ch	emistry by Puri Sharma and Pathan by Vishal Publishing House.					
2. Ess	2. Essentials of Physical Chemistry, Bahl & Tuli, S. Chand & Co. Ltd.						
3. Simplified course in Physical Chemistry, Madan & Tuli, S. Chand & Co. Ltd.							
4. Atkin's Physical Chemistry, Atkin, Oxford Press.							
	ming Courses						

e-Learning Source:

1. https://nptel.ac.in/courses/104106089

2. https://onlinecourses.swayam2.ac.in/nce19_sc15/preview

3. https://www.bonsecourscollege.edu.in/box-chemistry.php

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	1				2	3	3	2	2	2	1
CO2	3	1				1	3	3	2	1	2	1
CO3	3	1				2	2	3	2	1	3	2
CO4	3	1				1	2	3	1	1	1	1
CO5	3	1				3	2	3	2	2	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020	0-21			_			
Course Code	BS202	Title of the Course	Biophysical Chemistry	L	Т	Р	C
Year	II	Semester	III	3	1	0	4
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	used biophysical technique	s viz spectroscopy, chro	standing of basic principles, working and app matography, Centrifugation, Electrophoresis a punters and Scintillation counting.				

	Course Outcomes
CO1	Understand the basics of biophysics, chemical bonds and concept of thermodynamics.
CO2	Understand the basics and types of spectroscopy.
CO3	Know basic principle, methodology and application of various chromatographic techniques
CO4	Study centrifugation and electrophoresis - principles and applications
CO5	Understand the importance of radioactivity in biological studies, GM counters and Scintillation counting.

Unit No.	Title of the Unit	Contact Hrs.	Mapped CO				
1	Basics of Biophysics	Chemical bonding-Ionic bond, covalent bond, hydrogen bond and peptide bond, Vander-Waals forces, Principles of thermodynamics	8	CO1			
2	Analytical techniques	Colorimetry, UV-visible spectrophotometry, NMR, IR, Fluorescence and atomic absorption spectroscopy, Mass spectroscopy.	8	CO2			
3	Chromatography	Chromatography: Paper, thin-layer, Column, Ion-Exchange, HPLC, GLC and molecular sieving	8	CO3			
4	Centrifugation & Electrophoresis	Centrifugation principles, Theory, Types, instrumentation and applications. Electrophoresis: Principles, working and applications of PAGE and Agarose gel electrophoresis	8	CO4			
5	Radioactivity	Radioactivity: Types, their importance in biological studies, measure of radioactivity, GM counters, Scintillation counting and Autoradiography	8	CO5			
Referen	ice Books:						
1. Nara	yanan, P: Essentials of E	Biophysics, New Age Int. Pub. New Delhi.					
2. Keitł	n Wilson & John Walker	: Principles and Techniques of Biochemistry and Molecular Biology.					
3. Upad	lhyay, Upadhyay and Na	th: Biophysical Chemistry: Principle and Techniques					
4. Davi	d Sheehan: Physical Bio	chemistry Principle and Applications.					
5. Sabari Ghosal & A. K. Srivastava: Fundamentals of Bioanalytical techniques and Instrumentation							
e-Lea	e-Learning Source:						
	-						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO											
CO1	3	1					2	3			1
CO2	3	1					2	3			1
CO3	3	1					2	3			1
CO4	3	1					2	3			1
CO5	3	1					2	3			1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-20							
Course Code	BS241	Title of the Course	Fundamentals of Genetics	L	Т	Р	С
Year	Π	Semester	III	3	1	0	4
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	The objective of this cou	rse is to develop the unde	rstanding of basic concepts in genetics, To understand diso	rder rel	ated wit	h genetio	cs.

	Course Outcomes
CO1	The student will learn Mechanism of genetic exchange - conjugation, transformation and transduction. Gene mapping in bacteria.
CO2	The student will learn Model organism for genetic analysis, Drosophila development, maternal effect genes, morphogens
CO3	The student will learn Structural Organization: centromere, telomere, chromonema, euchromatin and heterochromatin, chemical composition and karyotype, nucleosome model, Special types of chromosomes, Chromosomal Variations, Chromosome mapping, structural and numerical aberrations.
CO4	The student will learn Mendels laws of heredity, Test cross, Incomplete dominance and simple problems, Interaction of Genes Complementary genes, Epistasis: Plumage colour in poultry, Multiple allelism: Blood groups in human beings, Concepts of allosomes and autosomes,
CO5	The student will learn Spontaneous and induced mutations, Physical and chemical mutagens, Mutation at the molecular level, Mutations in plants,
	animals, and microbes for economic benefit of man. Human Genetics.

virus bacteria. virus bacteria. 2 The genetic control of development and sex development and sex determination Model organism for genetic analysis, Drosophila development, maternal effect genes, morphogens and zygotic gene activity in development, sex chromosomes and sex determination, dosage compensation of X-linked genes. 8 3 Chromosomes Structural Organization: centromere, telomere, chromonema, euchromatin and heterochromatin, chemical composition and karyotype, nucleosome model, Special types of chromosomes: Salivary gland and Lampbrush chromosomes, Chromosomal Variations, Chromosome mapping, structural and numerical aberrations. 8 C 4 Mendelism Mendels laws of heredity, Test cross, Incomplete dominance and simple problems, Interaction of Genes: Supplementary factors, Comb pattern in fowls, Complementary genes: Flower color in sweet peas, Multiple factors: Skin color in human beings, Epistasis: Plumage colour in poultry, Multiple allelism: Blood groups in human beings, Concepts of allosomes and autosomes, XX-XY, XX-XO, ZW-ZZ, ZO-ZZ type, Linkage and Crossing Over, Mechanism and importance. 8 C 4 Karvotype in main inherited disorders: Allosomal (Kinefilter syndrome and Tumer's syndrome) 8 C	Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
2control of development and sex determinationModel organism for genetic analysis, Drosophila development, maternal effect genes, morphogens and zygotic gene activity in development, sex chromosomes and sex determination, dosage compensation of X-linked genes.83ChromosomesStructural Organization: centromere, telomere, chromonema, euchromatin and heterochromatin, chemical composition and karyotype, nucleosome model, Special types of chromosomes: Salivary gland and Lampbrush chromosomes, Chromosomal Variations, Chromosome mapping, structural and numerical aberrations.84MendelismMendels laws of heredity, Test cross, Incomplete dominance and simple problems, Interaction of Genes: Supplementary factors, Comb pattern in fowls, Complementary genes: Flower color in 	1	bacteria and		8	CO1
3 Chromosomes chemical composition and karyotype, nucleosome model, Special types of chromosomes: Salivary gland and Lampbrush chromosomes, Chromosomal Variations, Chromosome mapping, structural and numerical aberrations. 8 C 4 Mendelism Mendels laws of heredity, Test cross, Incomplete dominance and simple problems, Interaction of Genes: Supplementary factors, Comb pattern in fowls, Complementary genes: Flower color in sweet peas, Multiple factors: Skin color in human beings, Epistasis: Plumage colour in poultry, Multiple allelism: Blood groups in human beings, Concepts of allosomes and autosomes, XX-XY, XX-XO, ZW-ZZ, ZO-ZZ type, Linkage and Crossing Over, Mechanism and importance. 8 C 5 Mutations Spontaneous and induced mutations, Physical and chemical mutagens, Mutation at the molecular level, Mutations in plants, animals, and microbes for economic benefit of man. Human Genetics: Karyotype in man, inherited disorders: Allosomal (Klinefelter syndrome and Turner's syndrome), Autosomal (Down syndrome and Cri-DuChat syndrome). DNA Damage and Repair: Causes and Types of DNA damage, Major mechanisms of DNA repair: photoreactivation, nucleotide and base excision repairs, mismatch repair, SOS repair. 8	2	control of development and sex	and zygotic gene activity in development, sex chromosomes and sex determination, dosage compensation of X-linked genes.	8	CO2
4 Mendelism Genes: Supplementary factors, Comb pattern in fowls, Complementary genes: Flower color in sweet peas, Multiple factors: Skin color in human beings, Epistasis: Plumage colour in poultry, Multiple allelism: Blood groups in human beings, Concepts of allosomes and autosomes, XX-XY, XX-XO, ZW-ZZ, ZO-ZZ type, Linkage and Crossing Over, Mechanism and importance. 8 6 5 Mutations Spontaneous and induced mutations, Physical and chemical mutagens, Mutation at the molecular level, Mutations in plants, animals, and microbes for economic benefit of man. Human Genetics: Karyotype in man, inherited disorders: Allosomal (Klinefelter syndrome and Turner's syndrome), Autosomal (Down syndrome and Cri-DuChat syndrome). DNA Damage and Repair: Causes and Types of DNA damage, Major mechanisms of DNA repair: photoreactivation, nucleotide and base excision repairs, mismatch repair, SOS repair. 8	3	Chromosomes	chemical composition and karyotype, nucleosome model, Special types of chromosomes: Salivary gland and Lampbrush chromosomes, Chromosomal Variations, Chromosome mapping, structural	8	CO3
5 Mutations level, Mutations in plants, animals, and microbes for economic benefit of man. Human Genetics: Karyotype in man, inherited disorders: Allosomal (Klinefelter syndrome and Turner's syndrome), Autosomal (Down syndrome and Cri-DuChat syndrome). DNA Damage and Repair: Causes and Types of DNA damage, Major mechanisms of DNA repair: photoreactivation, nucleotide and base excision repairs, mismatch repair, SOS repair. 8	4	Mendelism	Genes: Supplementary factors, Comb pattern in fowls, Complementary genes: Flower color in sweet peas, Multiple factors: Skin color in human beings, Epistasis: Plumage colour in poultry, Multiple allelism: Blood groups in human beings, Concepts of allosomes and autosomes, XX-XY,	8	CO4
Defenence Dealers	5	Mutations	Spontaneous and induced mutations, Physical and chemical mutagens, Mutation at the molecular level, Mutations in plants, animals, and microbes for economic benefit of man. Human Genetics: Karyotype in man, inherited disorders: Allosomal (Klinefelter syndrome and Turner's syndrome), Autosomal (Down syndrome and Cri-DuChat syndrome). DNA Damage and Repair: Causes and Types of DNA damage, Major mechanisms of DNA repair: photoreactivation, nucleotide and base	8	CO5
1. Genetics (2012) 6th ed., Snustad, D.P. and Simmons, M.J., John Wiley & Sons. (Singapore), ISBN: 978-1-118-09242-2. 2.	1. Gene	etics (2012) 6th ed., Sn	ustad, D.P. and Simmons, M.J., John Wiley & Sons. (Singapore), ISBN: 978-1-118-09242-2. 2		
2. Genetics - A Conceptual Approach (2012), 4th ed., Pierce, B.A., W.H. Freeman & Co. (New York), ISBN:13:978-1-4292-7606-1 / ISBN:10:1-4292-7606-1	2. Gene	etics - A Conceptual Ap	pproach (2012), 4th ed., Pierce, B.A., W.H. Freeman & Co. (New York), ISBN:13:978-1-4292-7606-1 / ISBN:10:1	-4292-7606-	1

3. An Introduction to Genetic Analysis (2010), 10th ed., Griffiths, A.J.F, Wessler, S. R, Carroll, S. B. and Doebley, J., W.H. Freeman & Company (New York), ISBN:10: 1-4292-2943-8.

4. Molecular Cell Biology – Daniel, Sceintific American Books.

5. Principles of Gene Manipulations - Old & Primrose, Black Well Scientific Publications.

e-Learning Source:

https://docs.google.com/presentation/d/1FVva3inQfrPEGT3tn5beaL8kZrPXhL/edit?usp=sharing&ouid=114812600151870954936&rtpof=true&sd=truewidtering and the state of the state of

https://drive.google.com/drive/folders/1AcAkJligOJD8m1TR8TESPXMXa1uxyhtr?usp=sharing

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
C01	3	1					1	3		3	2
CO2	3	1					1	3		3	2
CO3	3	1					1	3		3	2
CO4	3	1					1	3		3	2
CO5	3	1					1	3		3	2

Effective from Session: 2020	Effective from Session: 2020-21							
Course Code	BS242	Title of the Course	Introduction to Cell Biology	L	Т	Р	С	
Year	II	Semester	III	3	1	0	4	
Pre-Requisite	10+2 with Biology	Co-requisite						
Course Objectives	The objective of this course is to develop the understanding of Cytoskeleton and Cell Membrane, structure of Microtubules, microfilaments, cellular organization of prokaryotic and eukaryotic cells signal transduction, secondary messengers.							

	Course Outcomes					
CO1	Distinguish between prokaryotic and eukaryotic cells and develop an understanding of microscopy.					
CO2	Would have deeper understanding of cell at structural and functional level.					
CO3	Develop an understanding of the Cytoskeleton, Microtubules, and microfilaments.					
CO4	Would have broad knowledge on the molecular interaction between cells.					
CO5	Would demonstrate a clear understanding of the signal transduction, secondary messengers.					

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Introduction and tools of cell biology	Prokaryotic (archaea and eubacteria) and eukaryotic cells (animal and plant cells), Light microscopy, phase contrast microscopy Fluorescence microscopy, confocal microscopy, 8 electron microscopy.							
2	Intracellular organization								
3	Cytoskeleton proteins and protein targeting	Structure and organization of actin filaments. Intermediate filament proteins, Microtubules: assembly and intracellular organization. Organization and movement of cilia and flagella, Concept of protein targeting.	Structure and organization of actin filaments. Intermediate filament proteins, Microtubules: assembly and intracellular organization. Organization and movement of cilia and flagella,8CO3						
4	Cell wall, Cell interactions Adherence innetions tight innetions gap innetions desmosomes								
5	Cell cycle	Cell death and cell renewal: Eukaryotic cell cycle, restriction point, and checkpoints. Cell division: Mitosis and Meiosis. Apoptosis and necrosis - brief outline.	8	CO5					
Referen	ice Books:								
		roach (2009) 5th ed., Cooper, G.M. and Hausman, R.E., ASM Press & Sunderland (Washington	DC), Sinaue	r					
	iates, MA, ISBN:978-0-								
	2. Molecular Cell Biology (2012) 7th ed., Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell. J., W.H. Freeman & Company (New York), ISBN:13:9781-4641-0981-2 / ISBN:10: 1-4641-0981-8.								
3. Molecular Biology of the Cell (2008) 5th ed., Alberts, B., Johnson, A., Lewis, J., and Enlarge, M., Garland Science (Princeton), ISBN:0-8153-1619- 4 / ISBN:0-8153-1620-8.									
4. Kar	4. Karp, G. 2010. Cell and Molecular Biology: Concepts and Experiments. 6th Edition. John Wiley & Sons. Inc.								
5. De l	5. De Robertis, E.D.P. and De Robertis, E.M.F. 2006. Cell and Molecular Biology. 8th edition. Lippincott Williams and Wilkins, Philadelphia.								
e-Lea	rning Source:								

			Course Articulation Matrix: (Mapping of COs with POs and PSOs)								
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1					1	1			
CO2	3	1					1	1			
CO3	3	1					1	1			
CO4	3	1					1	1	2		
CO5	3	1					1	1			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019	Effective from Session: 2019-2020							
Course Code	BS243	Title of the Course	Fundamentals of Bioinformatics	L	Т	Р	С	
Year	II Semester III 3						4	
Pre-Requisite	10+2 with Biology	Co-requisite						
Course Objectives	The objective of this course is to develop the understanding of basic practical techniques of bioinformatics and biological databases and will be able to apply these methods to research problems.							

	Course Outcomes						
CO1	Formulate and justify appropriate choices in technology, strategy, and analysis for a range of projects involving biological sequence data.						
CO2	Explain primary, secondary and composite protein databases and their impact on the display and analysis of biological data.						
CO3	Understand the layout of biological databases and retrieval of biological literature from NCBI bibliographic databases.						
CO4	Explain common methods and applications for sequence similarity and molecular phylogenetics.						
CO5	Gain knowledge of drug discovery process and developments, rational approaches to drug design, docking, and virtual screening.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Introduction to Bioinformatics	Genesis, definition, and need of Bioinformatics, Brief history of biological databases, International nucleotide databases (e.g., GenBank, European Molecular Biology Laboratory (EMBL), Bioinformation and DNA Data Bank of Japan (DDBJ) Center), International Nucleotide Sequence Database Collaboration (INSDC).							
2	Protein Databases	Introduction to structural elements of proteins, Classification of protein databases (e.g., primary, secondary, and composite databases), Brief overview of ExPASy (Expert Protein Analysis System) bioinformatics resource portal, Protein 3D structural databases (e.g., RCSB-PDB (Research Collaboratory for Structural Bioinformatics Protein Data Bank), and MMDB (Molecular Modeling Database) of NCBI)							
3	Biological File Formats and Literatures Databases	Biological File A brief overview of biological sequence and 3D structure file formats (e.g., GenBank/GenPept, EMBL, FASTA, PIR, and PDB), NCBI's literature databases (e.g., PubMed, PubMed Central, PubChem Project (e.g., PubChem Compound, Substance and Bioassay databases), and OMIM (Online Mendelian Inheritance 8 CO3							
4	Database Similarity Searching and Phylogenetics	Requirements of database searching, BLAST (Basic Local Alignment Search Tool) algorithm, Statistical significance and variants of BLAST, FASTA algorithm and its statistical significance, Comparison of BLAST and FASTA, Brief Overview of phylogenetic analysis 8 CO4							
5	Computer-Aided Drug Design	Introduction to drug discovery, drugs derived from natural products, existing drugs as a source for new drug discovery, screening for new drug leads, modern rational approach to drug design, docking, and virtual screening. A brief overview of online databases of Ligands and Drugs.	8	CO5					
Referen	ce Books:								
Protein E	Bioinformatics: From S	equence to Function, Academic Press, 2011, ISBN 0123884241, 9780123884244.							
Essential	Bioinformatics, Camb	ridge University Press, 2006, ISBN 113945062X, 9781139450621							
	Kerns EH, Di L. Drug-Like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization, Academic Press, Oxford, 2008 Principles of Medicinal Chemistry, 7th Edition, edited by TL Lemke, DA Williams, V F Roche, and SW Zito Williams and Wilkins: Philadelphia, 2013.								
e-Lear	ning Source:								
http://npt	tel.ac.in/courses/10210	1040							
https://or	https://onlinecourses.nptel.ac.in/noc16_bt07								
https://or	https://onlinecourses.nptel.ac.in/noc21_bt06								
https://ftp	p.ncbi.nih.gov/pub/fact	sheets/HowTo_BLASTGuide							

	Course Articulation Matrix: (Mapping of COs wi						g of COs with	POs and PSOs)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1				2		1	3		
CO2	3	1				2		1	3		
CO3	3	1				2		1	3		
CO4	3	1				2		1	3		
CO5	3	1				3		1	3		

	1
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21								
Course Code	BS244	Title of the Course	Physiology Lab	L	Т	Р	С	
Year	II	Semester	III	0	0	6	3	
Pre-Requisite	10+2 with Biology	Co-requisite						
Course Objectives	The objective of th	ne objective of this course is to develop the understanding of the physiological functions of the						
course objectives	biological systems							

	Course Outcomes						
CO1	Determination of osmotic potential of plant cell sap by plasmolytic method.						
CO2	To study the effect of two environmental factors (light and wind) on transpiration.						
CO3	To study the effect of light intensity and bicarbonate concentration on O2 evolution in photosynthesis.						
CO4	Estimation of hemoglobin.						
CO5	Measurement of blood pressure						

S.No.	Experiments	Contact Hrs.	Mapped CO
Exp-01	Determination of osmotic potential of plant cell sap by plasmolytic method.	6	CO1
Exp-02	To study the effect of two environmental factors (light and wind) on transpiration by excised twig.	6	CO2
Exp-03	To study the effect of light intensity and bicarbonate concentration on O2 evolution in photosynthesis.	6	CO3
Exp-04	Estimation of hemoglobin.	6	CO4
Exp-05	Measurement of blood pressure	6	CO5
Reference Books			
e-Learning Sou	rce:		

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO					-	-	/			-	
CO1	3	3	1			2	3	1			
CO2	3	3	1			2	3	1			
CO3	3	3	1			2	3	1			
CO4	3	3	1			2	3	1			
CO5	3	3	1			3	3	1		2	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21									
Course Code	BS206	Title of the Course	tle of the Course Cell Biology & Genetics Lab						
Year	II	Semester	III	0	0	6	3		
Pre-Requisite	10+2 with Biology	Co-requisite							
Course Objectives	epidermal cells and ye	east, Cell division processes: N	tanding of use of Micrometer and calibration fitotic and meiotic studies, Chromosomes: po v to make Blood smear – differential staining	olytene	e chrom	osomes	,		

	Course Outcomes						
CO1	The students will be able to comprehend the use of Micrometer and calibration, measurement of cells.						
CO2	The students will have able to explain Cell division: Mitosis and meiosis						
CO3	The students will be able to compare different types of Chromosomes.						
CO4	The students will have knowledge of types of chromosomes as polytene chromosomes						
CO5	The students will be able to perform experiments related to differential staining of blood and Buccal smear – Barr bodies						

Exp. No.	Title of Experiment	Contact Hrs.	Mapped CO				
Exp-01	Use of Micrometer and calibration, measurement of onion epidermal cells and yeast.	3	CO1				
Exp-02	Cell division: Mitotic and meiotic studies in grasshopper testes, onion root tips and flower bud	3	CO2				
Exp-03	Karyotype analysis – with the help of slides	6	CO3				
Exp-04	Chromosomes: Mounting of polytene chromosomes	6	CO4				
Exp-05	Blood smear – differential staining	6	CO5				
Exp-06	Buccal smear – Barr bodies	6	CO5				
Reference Bo	Reference Books:						
e-Learning Source:							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1				3	3	1		
CO2	3	3	1				3	3	1		
CO3	3	3	1				3	3	1		2
CO4	3	3	1				3	3	1		3
CO5	3	3	1				3	3	1		

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21								
Course Code	BS251	Title of the Course	Enzymes & Hormones	L	Т	Р	С	
Year	II	Semester	IV	3	1	0	4	
Pre-Requisite	10+2 with Biology	Co-requisite						
Course Objectives	The objective of this course is to develop the understanding of the concepts of enzyme and hormones enzyme kinetics.							

	Course Outcomes
CO1	General properties and modes of actions of enzymes
CO2	Activation energy and thermodynamics of enzyme action.
CO3	Structure, source, biochemical role and deficiency disease of Vitamins
CO4	Hormones: classification, structural features & functions in Plants: auxins, gibberellins,
CO5	Hormones and their functions secreted by endocrine glands

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO	
1	General properties and modes of actions of enzymes	Criteria of purity of enzymes Specific activity. Enzyme units-Katal and IU. Chemical nature of enzymes. Protein nature of enzymes and Non protein enzymes- Ribozymes and DNAzymes. Activation energy and thermodynamics of enzyme action. Classification of proteases with their mechanism of action.	8	CO1	
2	Enzyme Kinetics Enzyme Kinetics, Briggs-Haldane steady state approach, methods for the determination of Km and Vmax normalized initial rate equation and normalized curves. Enzyme inhibition and activation, Effect of enzymes concentration, pH and temperature on kinetics of enzyme reactions.				
3	Vitamins	Structure, source, biochemical role and deficiency disease: Fat soluble vitamins A, D & Water soluble vitamin – B1, B2, niacin, pyridoxine, folic acid, B12 and C			
4	Plant Hormones	Classification, structural features & functions in Plants: auxins, gibberellins, cytokinins, ethylene, and abscisic acid	8	CO4	
5	Animal Hormones	Hormones and their functions secreted by endocrine glands: Hypothalamus, pituitary gland- anterior pituitary and posterior pituitary; thyroid gland; adrenal gland; Pancreas; gonads.	8	CO5	
Referen	ice Books:				
1. L	ehninger, AL "Principle.	es of Biochemistry"			
2. L	ubert Stryer "Biochemis	stry".			
3. Ala	n Fersht "Enzyme Struc	ture and Mechanism."			
4.Paln	ner "Enzymes" Dixon &	z Webb "Enzymes.			
e-Lea	rning Source:				

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PS CO		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4				
CO1		3	1					1		2	2					
CO2	2	3	1					1		3		3				
CO3	3	3	1					1		3						
CO4	l I	3	1					1		3						
CO5	5	3	1		2	3		1		3		1				

2- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020	Effective from Session: 2020-21											
Course Code	BS212	Title of the Course	Molecular Biology	L	Т	Р	C					
Year	II	Semester	IV	3	1	0	4					
Pre-Requisite	10+2 with Biology	Co-requisite										
Course Objectives			s to understand the concept of different types of xpression in prokaryotes and eukaryotes.	genes	, DNA	replicat	ion,					

	Course Outcomes
CO1	The students will be able to explain the concept of genetic organization in prokaryotes and eukaryotes.
CO2	The students will be able to explain the process of DNA replication and its regulation in prokaryotes and eukaryotes.
CO3	The students will be able to explain the process of transcription in prokaryotes and eukaryotes and post transcriptional modifications.
CO4	The students will be able to describe the basics of translation in prokaryotes and eukaryotes and post translational modification.
CO5	The students will be able to discuss regulation in gene expression and DNA repair systems.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Genome organization	Central Dogma, Definition of gene, types of genes (split genes, overlapping genes; pseudogenes, cryptic genes), concept of intron and exon. Genome organization in prokaryotes. Complexity of eukaryotic genome, nucleosome model and higher order structure of DNA. Organellar genome (Mitochondria and chloroplast). Insertion elements and transposons.	8	CO1
2	DNA Replication	DNA as genetic material. Semiconservative mode of replication. Mechanism of Replication in prokaryotes and eukaryotes. Enzymes and proteins involved in replication, Theta model and Rolling circle model	8	CO2
3	Transcription	Properties of prokaryotic and eukaryotic promoters. RNA polymerase, transcription factors. Mechanism of transcription. Post-transcriptional modifications of eukaryotic mRNA (capping, polyadenylation and splicing)	8	CO3
4	Genetic code	Genetic code, adaptor role of t-RNA, Wobble hypothesis. Mechanism of translation in Prokaryotes and Eukaryotes, Post-translational modifications of proteins.	8	CO4
5	Regulation of Gene expression	Operon concept (Lac operon), transcriptional activation, galactose metabolism in yeast. Introduction to DNA repair systems (Photoreactivation, Base excision repair, Nucleotide excision repair, Mismatch repair)	8	CO5
Referen	ce Books:			
1. Lewin	n B. (2000). Genes VII.	Oxford University press		
2. Watso	on JD, Hopkins NH, Ro	berts JW, Steitz JA, Weiner AM. (1987). Molecular biology of the gene.		
3. Lehni	inger: Principles of Bioc	chemistry (2017) by Nelson and Cox Seventh edition, WH Freman and Co.		
4. Lodi	sh H, Baltimore D, Berk	A, Zipursky SL, Darnell J. (1995). Molecular cell biology.		
5. Karp.	.G (2002) Cell & Molect	ular Biology, 3rd Edition, John Wiley & Sons; INC		
e-Lear	rning Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4			
CO1	3	1					1	3						
CO2	3	1					1	3						
CO3	3	1					1	3						
CO4	3	1					1	3						
CO5	3	1					1	3						

Name & Sign of Program	Coordinator
------------------------	-------------

Effective from Session: 2019	Effective from Session: 2019-20											
Course Code	BS252	Title of the Course	Clinical Biochemistry	L	Т	Р	С					
Year	II	Semester	IV	3	1	0	4					
Pre-Requisite	10+2 with Biology	Co-requisite										
Course Objectives	The objective of this course is to develop the understanding of basic concepts of clinical biochemistry, To understand											
	disorder related with biomole	cules metabolism.										

Course C	Dutcomes
CO1	Anticoagulant preservatives for blood and urine. Transport of specimens.
CO2	Composition and their functions, Anemia:- classifications, erythrocyte indices. Blood coagulation system, Clotting time, Bleeding time, Prothrombin time,
	RBC count, WBC count,
CO3	Oral glucose tolerance test in normal and diabetic condition.
CO4	Cholesterol: Factors affecting blood cholesterol level. Dyslipoproteinemia, atheroscelorosis, risk factor and fatty liver.
CO5	Metabolism of bilirubin, jaundice - types, differential diagnosis. Liver function test – Icteric index, Vandenberg test,
	plasma protein changes.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Basic concepts of Clinical Biochemistry	A brief review of units and abbreviations used in expressing concentrations and standard solutions. Specimen collection and processing (Blood, urine, faeces). Anticoagulant preservatives for blood and urine. Transport of specimens.	8	CO1
2	Hematology	Blood: Composition and their functions, Anemia:- classifications, erythrocyte indices. Blood coagulation system, Clotting time, Bleeding time, Prothrombin time, RBC count, WBC count, Platelet count, Differential count, determination of Hb, PCV and ESR. Hemoglobinopathies, Thalassemias.	8	CO2
3	Disorder in carbohydrate metabolism:	Regulation of blood sugar, Glycosuria-types of glycosuria. Oral glucose tolerance test in normal and diabetic condition. Diabetes mellitus and Diabetic insipidus - hypoglycemia, hyperglycemia. Ketonuria, ketosis.	8	CO3
4	Disorder in lipid metabolism	Lipid and lipoproteins: Classifications, composition, mode of action. Cholesterol: Factors affecting blood cholesterol level. Dyslipoproteinemias, atheroscelorosis, risk factor and fatty liver. Involvement of enzymes in diagnostics of heart disease including aspartate transaminase, isoenzymes of creatine kinase and lactate dehydrogenase and troponin.	8	CO4
5	Liver function test	Metabolism of bilirubin, jaundice - types, differential diagnosis. Liver function test - Icteric index, Vandenberg test, plasma protein changes. Renal function test: Clearance test–Urea, Creatinine, Inulin, para-aminohippuric acid (PAH) test, Concentration and dilution test. Enzymology: Clinical significance of SGOT, SGPT, ALP, ACP, CPK and LDH	8	CO5
Referen	nce Books:			
1. Med	lical Biochemistry by MN	Chatterjee, Rana Shinde, 8 edition, 2013, Jaypee publications.		
2. Text	tbook of Medical Laborate	ory Technology by Praful B. Godkar and Darshan P. Godkar th		
3. Med	lical Laboratory Technolo	gy by Ramnik sood, 5 Edition, 1999, Jaypee publishers.		
4. Text	t book of Biochemistry wi	th clinical correlation, Thomas M. Devlin, 3rd edition, A. JohnWiley-Liss Inc. Publication.		
5. Prac	ctical Clinical Biochemistr	y, Harold Varley, 4th edition, CBS Publication and Distributors, New Delhi.		
e-Lea	rning Source:			
	0			

https://classroom.google.com/c/NTM3Njg5MTE4NjNa/p/OTI0Njc2NjAzMDFa/detai

https://docs.google.com/document/d/1xDyJSzt1GZ GSxrCG1fPEdGjaBCu9yKPw/edit?usp=sharing&ouid=114812600151870954936&rtpof=true&sd=t

		Course Art	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4				
C01	3	1					1	2	3						
CO2	3	1					1	2	3						
CO3	3	1					1	2	3						
CO4	3	1					1	2	3						
CO5	3	1					1	2	3						

Name & Sign of Program Coordinator	Sign & Seal of HoD	

Effective from Session: 2020)-21								
Course Code	BS253	Title of the Course	Fundamentals Of Plant Biochemistry	L	Т	Р	С		
Year	II	Semester	IV	3	1	0	4		
Pre-Requisite	10+2 with Biology	Co-requisite							
Course Objectives	The objective of this course is to develop the understanding of carbon assimilation, respiration and nitrogen metabolism,								
Course Objectives	terpenoids and representative examples from each class, biological functions of terpenoids. Concept of phytoalexins.								

	Course Outcomes
CO1	Overview of photosynthesis and different cycles operates in the plant.
CO2	Develop understanding of glycolysis, Alternative reactions of glycolysis, Fate of pyruvate, Regulation of plant glycolysis.
CO3	Gain knowledge of Nitrogen metabolism.
CO4	Structural organization of plant cell wall and effect of plant hormones on growth and development.
CO5	Overview of secondary metabolites.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Photosynthesis	Photosynthesis and Carbon assimilation: Structure of PSI and PSII complexes, Light reaction, Cyclic and noncyclic Photophosphorylation, Calvin cycle and regulation; C4 cycle and Crassulacean acid metabolism (CAM), Photorespiration.	8	CO1
2	Respiration	Respiration: Overview of glycolysis, Alternative reactions of glycolysis, Fate of pyruvate, Regulation of plant glycolysis, TCA cycle, oxidative phosphorylation and electron transport system.	8	CO2
3	Nitrogen metabolism	8	CO3	
4	Cell wall & plant hormones	Cell wall structure and plant growth Regulation: Components and structure of plant cell wall, Plant hormones and their effect on plant growth and development, Regulation of plant morphogenetic processes by light. Plant growth regulators – salicylic acid, polyamines, brassinosteroids.	8	CO4
5	Secondary metabolites	Secondary metabolites: Representatives alkaloid group and their amino acid precursors, function of alkaloids, Examples of major phenolic groups; simple phenylpropanoids, flavonoids, tannins and lignin, biological role of plant phenolics, Classification of terpenoids and representative examples from each class, biological functions of terpenoids. Concept of phytoalexins	8	CO5
	ce Books:			
1. Taiz,	L., Zeiger, E.,. Plant Ph	ysiology. Sinauer Associates Inc., U.S.A. 5th Edition.		
1. Hopki	ins, W.G., Huner, N.P.,	Introduction to Plant Physiology. John Wiley & Sons, U.S.A. 4th Edition.		
3 Bajrac	harya, D.,. Experiments	in Plant Physiology- A Laboratory Manual. Narosa Publishing House, New Delhi.		
4. Frank	B. Salisbury, Cleon W.	Ross: Plant Physiology. Wadsworth Publishing Company		
e-Lear	ning Source:			

			Course Articulation Matrix: (Mapping of COs with POs and PSOs)								
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1					1		2	2	
CO2	3	1					1		3		3
CO3	3	1	2				1		3		
CO4	3	1					1		3		
CO5	3	1					1		3		1

Effective from Session: 2020)-21						
Course Code	BS201	Title of the Course	Metabolism	L	Т	Р	С
Year	II	Semester	IV	3	1	0	4
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	kinetics, carbohydrate	metabolism, significance o dies, protein metabolism, r	nderstanding of characteristics of Enzymes, of glycolysis and ETC, untreated diabetes ole of urea cycle and errors of protein meta	s, lipic	i metal	oolism	and

	Course Outcomes							
CO1	Understand the characteristic of Enzymes, enzyme inhibition and kinetics							
CO2	Know the basics of carbohydrate metabolism, significance of glycolysis and ETC, untreated diabetes							
CO3	Know the basics of Lipid metabolism and production of ketone bodies							
CO4	Know the basics of Protein metabolism, role of urea cycle and errors of protein metabolism							
CO5	Know the biosynthesis and degradation of purine and pyrimidine							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Enzymes	Classification, properties and factors influencing enzyme activity, coenzymes, prosthetic group and co-factors, Lock & key hypothesis, induced fit hypothesis, Enzyme kinetics: Michaelis Menten equation, Lineweaver-Burk plot, Enzyme inhibition, Allosteric enzymes.	8	CO1
2	Carbohydrate metabolism	Glycolysis, TCA cycle, Electron Transport Chain and Oxidative phosphorylation, Gluconeogenesis and Glycogen metabolism.	8	CO2
3	Lipid metabolism	Degradation of fatty acids: oxidation; Ketone bodies, acidosis, ketosis, cholesterol synthesis.	8	CO3
4	4 Protein metabolism Urea Cycle, transport of ammonia, deamination and transamination reactions. Inborn errors of protein metabolism.			
5	Nucleic acid metabolism	Purine and Pyrimidine biosynthesis and degradation.	8	CO5
Referen	ce Books:			
1. Princi	iples of Biochemistry- A	AlbertL. Lehninger CBS Publishers & Distributors Publications		
2. Bioch	nemistry – Lubert stryer	Freeman International Edition.		
3. Bioch	nemistry – Keshav Treh	an Wiley Eastern Publications		
4. Funda	amentals of Biochemist	ry-J.L.Jain S.Chand and Company		
5. Bioch	nemistry- Prasaranga, B	angalore University		
6. Funda	amental of Biochemistry	y – Dr.A.C.Deb		
7. Textb	oook of Organic Chemis	try (A Modern Approach)		
8. The E	Biochemistry of Nucleic	acid - Tenth Edition-Roger L.P.Adams, John T. Knowler and David P.Leader, Chapman and Ha	all	
e-Lear	ning Source:			

				Course Artic	ulation Ma	trix: (Mappi	ng of COs wi	th POs and PS	Os)		
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1					2	3			
CO2	3	1					2	3			
CO3	3	1					2	3			
CO4	3	1					2	3		1	
CO5	3	1	2				2			3	2

5- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 202	Effective from Session: 2020-21						
Course Code	BS255	Title of the Course	Enzymology Lab	L	Т	Р	С
Year	II	Semester	IV	0	0	6	3
Pre-Requisite	10+2 with Biology	Co-requisite					
Course Objectives	The objective of this	course is to develop the un	derstanding of the concepts of enzyme dynamics.				

	Course Outcomes							
CO1	Know how to detect Amino acids by Paper chromatography and TLC.							
CO2	Know how to isolate enzyme and determine enzyme activity.							
CO3	Know how to study the effect of varying substrate and inhibitor concentration on the enzyme activity							
CO4	Know how to study the effect of pH and temperature on the enzyme activity.							
CO5	Know how to perform Poly Acrylamide Gel Electrophoresis (PAGE).							

Experiments	Contact Hrs.	Mapped CO
Amino acid detections (Paper chromatography/ TLC).	3	CO1
Isolation of enzyme and determination of enzyme activity	3	CO2
Study of the effect of pH on the enzyme activity.	3	CO4
Study of the effect of varying substrate concentration on the enzyme activity and determination of Km and Vmax	3	CO3
Study of the effect of temperature on the enzyme activity.	6	CO4
Study of the effect of inhibitors on the enzyme activity.	6	CO3
Poly Acrylamide Gel Electrophoresis Technique	6	CO5
rce:		
	Amino acid detections (Paper chromatography/ TLC). Isolation of enzyme and determination of enzyme activity Study of the effect of pH on the enzyme activity. Study of the effect of varying substrate concentration on the enzyme activity and determination of Km and Vmax Study of the effect of temperature on the enzyme activity. Study of the effect of inhibitors on the enzyme activity.	Experiments Hrs. Amino acid detections (Paper chromatography/ TLC). 3 Isolation of enzyme and determination of enzyme activity 3 Study of the effect of pH on the enzyme activity. 3 Study of the effect of varying substrate concentration on the enzyme activity and determination of Km and Vmax 3 Study of the effect of temperature on the enzyme activity. 6 Study of the effect of inhibitors on the enzyme activity. 6 Poly Acrylamide Gel Electrophoresis Technique 6

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
C01	3	3	1				3	3			
CO2	3	3	1				3	3			
CO3	3	3	1		2		3	3			
CO4	3	3	1				3	3		1	
CO5	3	3	1				3			3	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020-21 BS308 Title of the Course Р **Course Code** Genetic Engineering Lab L Т С 0 Π IV 0 Year Semester 6 3 10+2 with Biology **Pre-Requisite Co-requisite Course Objectives** The objective of this course is to develop the understanding of genetic engineering.

	Course Outcomes				
CO1	Isolate genomic DNA from bacteria, plant and animal tissues				
CO2	Isolate plasmid DNA (E. coli)				
CO3	Perform restriction digestion of DNA				
CO4	Perform Agarose Gel Electrophoresis				
CO5	Understand basics of PCR				

S.No.	Experiments	Contact Hrs.	Mapped CO
Exp-01	Isolation of genomic DNA from bacteria, plant and animal tissue	6	CO1
Exp-02	Isolation of plasmid DNA (E. coli)	6	CO2
Exp-03	Restriction digestion of DNA	6	CO3
Exp-04	Agarose Gel Electrophoresis	6	CO4
Exp-05	Demonstration of PCR	6	CO5
Reference Books	;; 		
e-Learning Sou	ırce:		
e-Learning Sou	ırce:		
e-Learning Sou	ırce:		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	3					3		3		
CO2	3	3				2	3		3		
CO3	3	3					3		3		
CO4	3	3					3				1
CO5	3	3		2			3				3

Name & Sign of Program Coordinator	Sign & Seal of HoD	